
THERAPY-Magazin
Designing practical balance training
Discover how targeted tasks, adjustable environments, and exergaming can enhance balance training for neuro and geriatric patients. Learn how self-service devices improve therapy safety and effectiveness.

Martin Huber
Freelancers in outpatient physiotherapy for neurological patients
patients
The central idea of taxonomy is to ensure an individually tailored therapy (“targeted therapy”) [9] through the targeted selection of tasks and the equally targeted design of the environment. This approach implements the requirements of the Dutch guideline for task specificity and environmental specificity in therapy for stroke patients [5, 6, 10, 16]. Standing and balancing devices (self-service devices) provide many options here.
Support surface
One of the most important options for the targeted adjustment of the task is choosing the size of the support surface (see Fig. 1), because foot positioning is probably the most traditional way of shaping. Shaping here refers to systematically increasing the level of difficulty [15]. According to the challenge point framework, the aim is to always challenge the patient at their individual performance limit [4]. The increasing levels of difficulty are: parallel standing, stepping stand, tandem stand, single-leg standing [8]. Cross-legged standing could be added. However, this standing position is not very functional.
One of the most important options for the targeted adjustment of the task is choosing the size of the support surface (see Fig. 1), because foot positioning is probably the most traditional way of shaping. Shaping here refers to systematically increasing the level of difficulty [15]. According to the challenge point framework, the aim is to always challenge the patient at their individual performance limit [4]. The increasing levels of difficulty are: parallel standing, stepping stand, tandem stand, single-leg standing [8]. Cross-legged standing could be added. However, this standing position is not very functional.

The “classic” therapy for sensory weighting involves working with closed eyes.
Another important component in adjusting the task is to determine the directions in which the body’s centre of gravity should be moved across the support surface. The main directions of movement are anterior-posterior (a-p), medio-lateral (m-l) and 2D movements, which result from a combination of a-p and m-l weight shifts (see Fig. 2). Anterior weight shifts are a useful means of practising the “ankle joint strategy”, which mainly activates the distal muscles [11, 13], while m-l weight shifts train lateral movement control. The proximal muscles are mainly required here. In severely affected patients it can also be beneficial to exercise statically, i.e. the body’s centre of gravity should simply be held above the support surface without any visible movement. The aim here is not to fall over.
Weight shifts can also be induced through reaching and grasping movements of the upper extremities (see Fig. 4). This is a very functional approach, because everyday life involves lots of arm and grasping movements while standing. Depending on the target point of the reaching or grasping movement, the direction of the weight shift can be determined [11]. For grasping movements, the level of difficulty of the task can also be adjusted by changing the weight of the object to be lifted (keyword: shaping).
Weight shifts can also be induced through reaching and grasping movements of the upper extremities (see Fig. 4). This is a very functional approach, because everyday life involves lots of arm and grasping movements while standing. Depending on the target point of the reaching or grasping movement, the direction of the weight shift can be determined [11]. For grasping movements, the level of difficulty of the task can also be adjusted by changing the weight of the object to be lifted (keyword: shaping).
Sensory weighting
Many neurological and also geriatric patients have difficulties with what is known as sensory weighting. Sensory weighting is the dynamic process of integrating and processing sensory information [12]. The sensory information that the central nervous system uses to control balance is somatosensory, visual and vestibular input. For example, in unfavourable lighting conditions, sensory integration must be weighted in favour of somatosensory input and away from visual input. People with balance problems often rely excessively on visual acuity [7]. This results in a more or less pronounced gaze fixation. To train sensory weighting, the task can be adjusted accordingly.
Many neurological and also geriatric patients have difficulties with what is known as sensory weighting. Sensory weighting is the dynamic process of integrating and processing sensory information [12]. The sensory information that the central nervous system uses to control balance is somatosensory, visual and vestibular input. For example, in unfavourable lighting conditions, sensory integration must be weighted in favour of somatosensory input and away from visual input. People with balance problems often rely excessively on visual acuity [7]. This results in a more or less pronounced gaze fixation. To train sensory weighting, the task can be adjusted accordingly.
Games can have a positive influence on motivation during training.
One option for reducing gaze fixation is to perform gaze sequence or gaze stabilisation tasks. This involves moving the head while the eyes remain stable. The “classic” therapy for sensory weighting is working with closed eyes. It is important to note that it makes sense to give target points for shifting weight that can be sensed by the somatosensory system (see Fig. 5). These target points provide the patient with orientation for the extent of the weight shifts.
Adjusting the environment
Targeted adaptation of the environment provides further interesting therapy options (see Fig. 6). Physical therapy wedges are particularly suitable for specific training of certain aspects of postural control [8]. There are three basic wedge position variations: toes-up, toes-down and both in combination with a diagonal wedge position, which then has a pronatorial tilting effect. The different wedge positions have different indications [8]. The toes-up position causes a mobilisation of the calf muscles, the toes-down position causes an increased activation of the calf muscles; this can help to improve the ankle joint strategy. The diagonal wedge position causes a pronated position in the lower ankle joint, which is intended to counteract the typical supinated misalignment of the feet in neurological patients. The diagonal position can be combined with both toes-down and toes-up. Further options then arise from the additional inclusion of different foot positions when working with the therapy wedge.
Targeted adaptation of the environment provides further interesting therapy options (see Fig. 6). Physical therapy wedges are particularly suitable for specific training of certain aspects of postural control [8]. There are three basic wedge position variations: toes-up, toes-down and both in combination with a diagonal wedge position, which then has a pronatorial tilting effect. The different wedge positions have different indications [8]. The toes-up position causes a mobilisation of the calf muscles, the toes-down position causes an increased activation of the calf muscles; this can help to improve the ankle joint strategy. The diagonal wedge position causes a pronated position in the lower ankle joint, which is intended to counteract the typical supinated misalignment of the feet in neurological patients. The diagonal position can be combined with both toes-down and toes-up. Further options then arise from the additional inclusion of different foot positions when working with the therapy wedge.
Motivation through exergaming
Exergaming allows for an expansion of therapy options (see Fig. 7). Through various game situations, certain aspects of postural control can be trained in a very specific way. The games can have a positive influence on motivation during exercise and are also well-suited for independent training, as permanent supervision by a therapist is not necessary. Exergaming can easily be combined with all the aforementioned aspects of task and environment design.
Finally, a short (and incomplete) list of “typical” balance problems in neurological and geriatric patients [1, 2, 3, 14]:
- limited upper ankle strategy for shifting weight, particularly anterior but also posterior
- medio-lateral instability or limited weight transfer, particularly on the more heavily affected side
- limited sensory weighting
The problem areas of the patient are identified in a prior clinical reasoning session. Then a tailored therapy is developed. Ultimately, task and environmental specificity are essential criteria for the effectiveness of the therapy. Using imagination and expertise, meaningful and individualised therapy situations can be created with self-service devices.
Exergaming allows for an expansion of therapy options (see Fig. 7). Through various game situations, certain aspects of postural control can be trained in a very specific way. The games can have a positive influence on motivation during exercise and are also well-suited for independent training, as permanent supervision by a therapist is not necessary. Exergaming can easily be combined with all the aforementioned aspects of task and environment design.
Finally, a short (and incomplete) list of “typical” balance problems in neurological and geriatric patients [1, 2, 3, 14]:
- limited upper ankle strategy for shifting weight, particularly anterior but also posterior
- medio-lateral instability or limited weight transfer, particularly on the more heavily affected side
- limited sensory weighting
The problem areas of the patient are identified in a prior clinical reasoning session. Then a tailored therapy is developed. Ultimately, task and environmental specificity are essential criteria for the effectiveness of the therapy. Using imagination and expertise, meaningful and individualised therapy situations can be created with self-service devices.
Conclusion
Therapy using self-service devices can be designed individually and in a targeted manner. It provides many therapy options in a fall-safe environment. In addition to the task and environmental specificity, the effect factor of intensity can also be implemented.
Therapy using self-service devices can be designed individually and in a targeted manner. It provides many therapy options in a fall-safe environment. In addition to the task and environmental specificity, the effect factor of intensity can also be implemented.
Ambulante Rehabilitation
balo
Fachkreise
Produkte
Standing & Balancing
Therapy & Practice
THERAPY 2020-II
THERAPY Magazine

Martin Huber
Freelancers in outpatient physiotherapy for neurological patients
patients
Martin Huber is a physiotherapist who earned his Master of Science in Neurorehabilitation in 2007. As a therapist, he primarily treats patients with central nervous system disorders. Since 2010, he has been working freelance in outpatient physiotherapy for neurological patients. Several years ago, he published articles in renowned professional journals on postural control and task-oriented therapy, and he has been a speaker at various national physiotherapy congresses.
References:
- Bower K (2019). Dynamic balance and instrumented gait variables are independent predictors of falls following stroke. Journal of NeuroEngineering and Rehabilitation.16:3.
- de Haart M (2004). Recovery of standing balance in postacute stroke patients: a rehabilitation cohort study. Arch Phys Med Rehabil 85:886-95.
- Geurts AC (2005). A review of standing balance recovery from stroke. Gait Posture 22(3):267-81.
- Guadagnoli MA, Lee T (2004). Challenge point: a framework for conceptualising the effects of various practice conditions in motor learning. J Mot Behav.39: 212-24.
- Huber M (2014). Posturale Kontrolle. pt Zeitschrift für Physiotherapeuten 66(5): 12-23.
- Huber M (2016). Posturale Kontrolle – Grundlagen. neuroreha 8: 158-162.
- Huber M (2018). Balancepad – wissen wir wie´s wirkt? physiopraxis 16(5): 30-31.
- Huber M (2019). Auf der schiefen Bahn – Gleichgewichtstraining auf dem Therapiekeil, physiopraxis. 17(11-12): 42-45.
- Johns E (2019). Using the Brief-BESTest paired with a novel algorithm to provide targeted balance interventions for people with subacute stroke: a feasibility study. TOPICS IN STROKE REHABILITATION. 26(1):32-38.
- KNGF (2014). Clinical Practice Guideline for Physical Therapy in patients with stroke. Practical Guideline.
- Leonard J (2009). Reaching to Multiple Targets When Standing: The Spatial Organization of Feedforward Postural Adjustments. J Neurophysiol 101: 2120-2133.
- Mahboobin A (2008). Sensory Adaptation in Human Balance Control: Lessons for Biomimetic Robotic Bipeds. Robotics Institute. Paper 72.
- Maki B (2006). Control of rapid limb movements for balance recovery: age-related changes and implications for fall prevention. Age and Ageing. 35-S2: ii12-ii18.
- Morrison S (2016). Deficits in medio-lateral balance control and the implications for falls in individuals with multiple sclerosis. Gait & Posture 49:148-154.
- Taub E (1994). An operant approach to rehabilitation medicine: overcoming learned nonuse by shaping. Journal of the Experimental Analysis of Behavior. (61): 281-293.
- Veerbeek JM (2014). What Is the Evidence for Physical Therapy Poststroke? A Systematic Review and Meta-Analysis. PLoS ONE 9(2): e87987.
Related contents
Find related exciting contents in our media library.
This is not what you are searching for? Knowledge
Meet our specialists.
Are you interested in our solutions? Schedule a meeting with a Consultant to talk through your strategy and understand how TEHRA-Trainer can help you to advance rehabilitation.